Chern number and Z_2 invariant

Hikaru Sawahata Collabolators: Yo Pierre Mizuta, Naoya Yamaguchi, Fumiyuki Ishii

Graduate School of Natural Science and Technology, Kanazawa University

2016/11/25

Introduction

- Chern insulator, Topological insulator
- Topological invariant

2 Fukui-Hatsugai method

- (Chern number)
- Z_2 invariant

3 Test calculation and Application- Z_2 invariant -

Introduction

Chern insulator, Topological insulator

Topological material: Chern insulator¹ or Topological insulator² has special edge state(s).

¹Thouless-Kohmoto et al.,Phys. Rev. Lett. **49**, 405 (1982) ²L. Fu and C. Kane, Phys. Rev. B **74**, 195312 (2006)

Hikaru SawahataCollabolators: Yo Pierre Miz

Chern number and Z_2 invariant

Example of edge states

Bi(111) film's(Topological insulator)³ band dispersion

Topological invariant(1)

Chern insulator is characterized by Chern number C defined as

Chern number

$$C = \sum_{n}^{occ.} \frac{1}{2\pi} \int_{BZ} dk_x dk_y F_n = 0, \pm 1, \pm 2, \pm 3, \cdots$$
$$F_n = (\nabla \times \mathbf{A}_n)_z, \mathbf{A}_n = i \langle u_{n\mathbf{k}} | \frac{\partial}{\partial \mathbf{k}} | u_{n\mathbf{k}} \rangle$$

C = 0 corresponds to a trivial state and

 $C = \pm 1, \pm 2, \pm 3, \cdots$ corresponds to a Chern insulator state.

Topological insulator is characterized by Z_2 invariant defined as Z_2 invariant

$$Z_2 = \sum_{n=1}^{occ.} \frac{1}{2\pi} \left(\oint_{\text{Half BZ}} \mathbf{A}_n \cdot d\mathbf{k} - \int_{\text{Half BZ}} dk_x dk_y F_n \right) = 0 \text{ or } 1 \pmod{2}$$

 $Z_2 = 0$ corresponds to a trivial state and $Z_2 = 1$ corresponds to a topological insulator state.

Hikaru SawahataCollabolators: Yo Pierre Miz

Chern number and Z_2 invariant

Topological invariant(2)

Why is Topological invariant, Chern number or Z_2 invariant important?

We can predict if special edge state(s) exist by calculating Chern number or Z_2 invariant in a bulk system \rightarrow **NO need to calculate edge states**.

Topological invariant, Chern number or Z_2 invariant doesn't change without gap closing. This fact is analogous to mathematical "Topology"

Fukui-Hatsugai method computing Chern number and Z_2 invariant

Chern number

Computing Chern number(1)-Overlap matrix-

The definition of Chern number:

$$C_n = \frac{1}{2\pi} \int_{\mathrm{BZ}} dk_x dk_y F_n = 0, \pm 1, \pm 2, \cdots$$

we define overlap matrix U (we can calculate U by "polB.c")⁴

$$U_{\mu} = \det \langle u_m(\mathbf{k}) | u_n(\mathbf{k} + \Delta \mu) \rangle$$

and, we can obtain \boldsymbol{A} and \boldsymbol{F} as

$$\begin{split} \mathcal{A}_{\boldsymbol{\mu}}(\mathbf{k}) &= \operatorname{Im} \log U_{\boldsymbol{\mu}}(\mathbf{k}) \\ \mathcal{F}_{k_x k_y}(\mathbf{k}) &= \operatorname{Im} \log U_{k_x}(\mathbf{k}) U_{k_y}(\mathbf{k} + \Delta k_x) U_{k_x}^{-1}(\mathbf{k} + \Delta k_y) U_{k_y}^{-1}(\mathbf{k}) \end{split}$$

For obtaining Chern number, we need to calculate F on every "tile" in discretized Brillouin Zone and summate them ⁵.

⁴Electric Polarization by Berry Phase:Ver. 1.1, Technical Notes on OpenMX
 ⁵T. Fukui, Y. Hatsugai and H. Suzuki, J. Phys. Soc. Jpn. **74**, 1674 (2005).

Hikaru SawahataCollabolators: Yo Pierre Miz

Chern number and Z_2 invariant

Computing Chern number(2)-Calculate F-

Discretized Brillouin Zone in the direction of k_x and k_y , and calculate on every "tile",

$$\begin{split} U_{12} &= \det \langle u_1 | u_2 \rangle \\ U_{23} &= \det \langle u_2 | u_3 \rangle \\ U_{34} &= \det \langle u_3 | u_4 \rangle \\ U_{41} &= \det \langle u_4 | u_1 \rangle \\ F_{\mathbf{k}} &= \operatorname{Im} \log U_{12} U_{23} U_{34} U_{41} \end{split}$$

and, we can obtain Chern number as

$$C = \sum_{n}^{\text{occ.}} C_n = \frac{1}{2\pi} \sum_{\mathbf{k}}^{\text{BZ}} F_{\mathbf{k}}$$

2016/11/25 11 / 27

Z_2 invariant

There are three methods for computing Z_2 invariant

Method	Advantage	Disadvantage	
Parity ⁶	Easy	Only inversion symmetric system	
WFC ⁷⁸	intuitive	indirect	
Fukui-Hatsugai ⁹	Direct	not intuitive	

We implemented these three methods.

In this presentation, we introduce a Fukui-Hatsugai method. Fukui-Hatsugai is direct method and suitable for **automatic** searching for topological insulators. (application to material informatics)

⁸R. Yu, X. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B **84**, 075119 (2011).

⁹T.Fukui and Y.Hatsugai, J. Phys. Soc. Jpn. **76**, 053702 (2007).

Hikaru SawahataCollabolators: Yo Pierre Miz

⁶L. Fu and C. Kane, Phys. Rev. B **76**, 045302 (2007).

⁷A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

Computing Z₂ invariant -Fukui-Hatsugai method-

Computing Z_2 invariant by Fukui-Hatsugai method is almost same as computing Chern number.

$$Z_{2} = \frac{1}{2\pi} \sum_{n}^{\text{occ.}} \left(\oint_{\text{Half BZ}} \mathbf{A}_{n} \cdot d\mathbf{k} - \int_{\text{Half BZ}} F_{n} dk_{x} dk_{y} \right) \pmod{2}$$

$$U_{12} = \det \langle u_{1} | u_{2} \rangle$$

$$U_{23} = \det \langle u_{2} | u_{3} \rangle$$

$$U_{34} = \det \langle u_{3} | u_{4} \rangle$$

$$U_{41} = \det \langle u_{4} | u_{1} \rangle$$

$$F_{\mathbf{k}} = \text{Im } \log U_{12} U_{23} U_{34} U_{41}$$

$$A_{ab} = \text{Im } \log U_{ab}$$

$$n(\mathbf{k}) = \frac{1}{2\pi} [(A_{12} + A_{23} + A_{34} + A_{41}) - F_{\mathbf{k}}]$$

$$Z_{2} = \frac{1}{2\pi} \sum_{\mathbf{k}}^{\text{Half BZ}} n(\mathbf{k}) \pmod{2}$$

Test calculation and Application $-Z_2$ invariant -

we made two codes, "calB.c" (Chern number) and "Z2FH.c" (Z_2 invariant) by modifying "polB.c" (calculate polarization by Berry phase) So, you have to prepare (system name).scfout file by keyword specified in input file

HS.fileout	on	
and you can obtain	Chern number or Z_2 invariant by	ý
(PATH)/calB (PATH)/Z2FH	(system name).scfout (system name).scfout	

Test calculation- Z_2 invariant (1)

 Z_2 invariant calculated by Fukui-Hatsugai method which is implemented in OpenMX, completely agrees for all these materials.

Material	Method	<i>Z</i> ₂	Fukui-Hatsugai	Previous study
Bi ₂ Te ₃	Parity	1;(000)	1;(000)	[1]
Bi ₂ Se ₃	Parity	1;(000)	1;(000)	[1]
Sb ₂ Te ₃	Parity	1;(000)	1;(000)	[1]
Sb ₂ Se ₃	Parity	0;(000)	0;(000)	[1]
Bi(111) film	Parity	1	1	[2]
TIBiTe ₂	Parity	1;(000)	1;(000)	[3]
TIBiSe ₂	Parity	1;(000)	1;(000)	[3]
TIBiS ₂	Parity	0;(000)	0;(000)	[3]
TISbTe ₂	Parity	1;(000)	1;(000)	[3]
TISbSe ₂	Parity	1;(000)	1;(000)	[3]
TISbS ₂	Parity	0;(000)	0;(000)	[3]

 Z_2 invariant calculated by Fukui-Hatsugai method which is implemented in OpenMX, completely agrees for all these materials.

Material	Method	Z ₂	Fukui-Hatsugai	Previous study
YBiO ₃	Parity	1;(111)	1;(111)	[4]
YSbO ₃	Parity	1;(111)	1;(111)	[4]
AlBi,zincblende	WFC	1;(000)	1;(000)	[5]
BBi,zincblende	WFC	1;(000)	1;(000)	[5]
GaBi,zincblende	WFC	1;(000)	1;(000)	[5]
InBi,zincblende	WFC	1;(000)	1;(000)	[5]
TISbX ₂ film	WFC	1	1	[6]
CsPbl ₃	WFC	1;(111)	1;(111)	[7]
CsPbl ₃ , FE	WFC	1;(111)	1;(111)	[7]

- H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, Nat. Phys. 5, 438 (2009).
- [2] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
- [3] B. Singh et al., Phys. Rev. B. 86, 115208 (2012).
- [4] H. Jin, S. Rhim, J. Im, and A. Freeman, Sci. Reports **3**, 1651 (2013).
- [5] H. Huang et al., Phys. Rev. B 90, 195105 (2014).
- [6] R. W. Zhang et al. Sci. Reports 6, 21351 (2016).
- [7] S. Liu, Y. Kim, L. Tan, and A. Rappe, Nano. Lett. 16, 1663 (2016).

We predict topological phase transition on Bi(111) film by electric field, topological insulator to normal insulator.

Application(2)- Z_2 invariant-

We confirmed Z_2 invariant by WFC and Fukui-Hatsugai.

$$E = 0 \text{ V/Å}$$
 $E = 2.5 \text{ V/Å}$

- Chern insulator or topological insulator has special edge states.
- Chern insulator is characterized "Chern number" and topological insulator is characterized " Z_2 invariant".
- These values are obtained by "Fukui-Hatsugai method" (calculation of Berry curvature F and Berry connection **A** by overlap matrix).
- This method is direct, so this is suitable for automatic searching for material, topological insulators or Chern insulators,

Appendix

Quantum Hall effect, Quantum spin Hall effect

Hikaru SawahataCollabolators: Yo Pierre Miz

Chern number and Z_2 invariant

2016/11/25 24 / 27

Calculate Z_2 invariant(1)-Calculate F and A-

The definition of Z_2 invariant:

$$Z_2 = \frac{1}{2\pi} \sum_{n}^{\text{occ.}} \left(\oint_{\text{Half BZ}} \mathbf{A}_n \cdot d\mathbf{k} - \int_{\text{Half BZ}} F_n dk_x dk_y \right) \pmod{2}$$

Computing Z_2 invariant is same as Chern number.

Calculate A and F by overlap matrix every "tile" and calculate $n(\mathbf{k})$ which is defined,

$$n(\mathbf{k}) = -\frac{1}{2\pi} [A_{k_y}(\mathbf{k} + \Delta k_x) - A_{k_y}(\mathbf{k}) - (A_{k_x}(\mathbf{k} + \Delta k_y) - A_{k_x}(\mathbf{k})) - F_{k_x k_y}(\mathbf{k})]$$

 $n(\mathbf{k})$ is called "Lattice Chern number", we can obtain Z_2 invariant as,

$$Z_2 = \frac{1}{2\pi} \sum_{\mathbf{k}}^{\text{Half BZ}} n(\mathbf{k}) \pmod{2}$$

Calculate Z_2 invariant(2)-Lattice Chern number-

Discretized Brillouin Zone in the direction of k_x and k_y , and calculate on every "tile",

$$\begin{split} U_{12} &= \det \langle u_1 | u_2 \rangle \\ U_{23} &= \det \langle u_2 | u_3 \rangle \\ U_{34} &= \det \langle u_3 | u_4 \rangle \\ U_{41} &= \det \langle u_4 | u_1 \rangle \\ F_{\mathbf{k}} &= \operatorname{Im} \log U_{12} U_{23} U_{34} U_{41} \\ A_{ab} &= \operatorname{Im} \log U_{ab} \end{split}$$

and, we can obtain Lattice Chern number as

$$n(\mathbf{k}) = \frac{1}{2\pi} [(A_{12} + A_{23} + A_{34} + A_{41}) - F_{\mathbf{k}}]$$

Red circle is +1, blue triangle is -1, blank is 0

Calculate Z_2 invariant(3)-Gauge fix-

When we calculate Z_2 invariant, we summate only Half BZ, so summation is **gauge dependent**!! \rightarrow we have to fix gauge

• Red point · · ·

Translation symmetric points

- Blue point… Time reversal symmetric points
- Yellow point · · · Kramars degenerate points

I'll explain the details of fixing gauge if extra time is available