1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
from __future__ import print_function from pythtb import * import numpy as np import matplotlib.pyplot as plt
def get_kane_mele(topological): "Return a Kane-Mele model in the normal or topological phase."
lat = [[1.0,0.0],[0.5,np.sqrt(3.0)/2.0]] orb = [[1./3.,1./3.],[2./3.,2./3.]]
ret_model = tbmodel(2,2,lat,orb,nspin = 2)
if topological=="even": esite = 2.5 elif topological=="odd": esite = 1.0 thop = 1.0 spin_orb = 0.6*thop*0.5 rashba = 0.25*thop
ret_model.set_sites([esite,(-1.0)*esite])
sigma_x = np.array([0.,1.,0.,0]) sigma_y = np.array([0.,0.,1.,0]) sigma_z = np.array([0.,0.,0.,1])
ret_model.set_hop(thop, 0, 1, [ 0, 0]) ret_model.set_hop(thop, 0, 1, [ 0,-1]) ret_model.set_hop(thop, 0, 1, [-1, 0])
ret_model.set_hop(-1.j*spin_orb*sigma_z, 0, 0, [ 0, 1]) ret_model.set_hop( 1.j*spin_orb*sigma_z, 0, 0, [ 1, 0]) ret_model.set_hop(-1.j*spin_orb*sigma_z, 0, 0, [ 1,-1]) ret_model.set_hop( 1.j*spin_orb*sigma_z, 1, 1, [ 0, 1]) ret_model.set_hop(-1.j*spin_orb*sigma_z, 1, 1, [ 1, 0]) ret_model.set_hop( 1.j*spin_orb*sigma_z, 1, 1, [ 1,-1])
r3h = np.sqrt(3.0)/2.0 ret_model.set_hop(1.j*rashba*( 0.5*sigma_x - r3h*sigma_y), 0, 1, [ 0, 0], mode = "add") ret_model.set_hop(1.j*rashba*(-1.0*sigma_x ), 0, 1, [ 0,-1], mode = "add") ret_model.set_hop(1.j*rashba*( 0.5*sigma_x + r3h*sigma_y), 0, 1, [-1, 0], mode = "add")
return ret_model
for top_index in ["even","odd"]:
my_model = get_kane_mele(top_index)
path = [[0.,0.],[2./3.,1./3.],[.5,.5],[1./3.,2./3.], [0.,0.]] label=(r'$\Gamma $',r'$K$', r'$M$', r'$K^\prime$', r'$\Gamma $') (k_vec,k_dist,k_node) = my_model.k_path(path,101,report=False)
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(10,10))
evals = my_model.solve_all(k_vec) ax1.plot(k_dist,evals[0]) ax1.plot(k_dist,evals[1]) ax1.plot(k_dist,evals[2]) ax1.plot(k_dist,evals[3]) ax1.set_title("Kane-Mele: " + top_index + " phase") ax1.set_xticks(k_node) ax1.set_xticklabels(label) ax1.set_xlim(k_node[0],k_node[-1]) for n in range(len(k_node)): ax1.axvline(x = k_node[n],linewidth = 0.5, color = 'r') ax1.set_xlabel("k-space") ax1.set_ylabel("Energy")
my_array = wf_array(my_model,[41,41])
my_array.solve_on_grid([-0.5,-0.5])
wan_cent = my_array.berry_phase([0,1],dir=1,contin=False,berry_evals=True) wan_cent /= (2.0*np.pi)
nky = wan_cent.shape[0] ky = np.linspace(0.,1.,nky) for shift in range(-2,3): ax2.plot(ky,wan_cent[:,0] + float(shift),"k.") ax2.plot(ky,wan_cent[:,1] + float(shift),"k.") ax2.set_ylim(-1.0,1.0) ax2.set_ylabel('Wannier center along x') ax2.set_xlabel(r'$k_y$') ax2.set_xticks([0.0,0.5,1.0]) ax2.set_xlim(0.0,1.0) ax2.set_xticklabels([r"$0$",r"$\pi$", r"$2\pi$"]) ax2.axvline(x=.5,linewidth=0.5, color='k') ax2.set_title("1D Wannier centers: "+top_index+" phase")
fig.tight_layout() fig.savefig("kane_mele_"+top_index+".pdf")
print('Done.\n')
|