1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
| module pub implicit none integer yn,kn,ne,N,enn,hn real eta,dk,de parameter(yn = 50,hn = 4,kn = 50, ne = 50,N = yn*4,eta = 0.01,dk = 0.01,de = dk) real,parameter::pi = 3.1415926535 complex,parameter::im = (0.,1.0) complex Ham(N,N),one(N,N)
real m0,mu real tx,ty real ax,ay,gamma complex g1(hn,hn) complex g2(hn,hn) complex g3(hn,hn)
integer::lda = N integer,parameter::lwmax = 2*N + N**2 real,allocatable::w(:) complex,allocatable::work(:) real,allocatable::rwork(:) integer,allocatable::iwork(:) integer lwork integer lrwork integer liwork integer info end module pub
program sol use pub integer i1
allocate(w(N)) allocate(work(lwmax)) allocate(rwork(1+5*N+2*N**2)) allocate(iwork(3+5*N))
m0 = 1.5 mu = 0 tx = 1.0 ty = 1.0 ax = 1.0 ay = 1.0 do i1 = 1,N one(i1,i1) = 1 end do call main() stop end program sol
subroutine main() use pub integer m1,m2,i1 real kx,ky,omega,re2 complex h1(N,N),h2(N,N) complex re1 open(30,file="openy-bhz.dat") do omega = -3.0,3.0,de do kx = -pi,pi,dk re1 = 0 call openy(kx) h1 = omega*one - ham + im*eta*one call inv(h1,h2) do i1 = 1,N re1 = re1 + h2(i1,i1) end do re2 = -2*aimag(re1)/pi/N write(30,999)kx/pi,omega,re2 end do write(30,*)" " end do close(30) open(31,file="openx-bhz.dat") do omega = -3.0,3.0,de do ky = -pi,pi,dk re1 = 0 call openx(ky) h1 = omega*one - ham + im*eta*one call inv(h1,h2) do i1 = 1,N re1 = re1 + h2(i1,i1) end do re2 = -2*aimag(re1)/pi/N write(31,999)ky/pi,omega,re2 end do write(31,*)" " end do close(31) 999 format(3f11.5) return end subroutine main
subroutine Pauli() use pub
g1(1,1) = 1 g1(2,2) = -1 g1(3,3) = 1 g1(4,4) = -1
g2(1,2) = 1 g2(2,1) = 1 g2(3,4) = -1 g2(4,3) = -1
g3(1,2) = -im g3(2,1) = im g3(3,4) = -im g3(4,3) = im return end subroutine Pauli
subroutine openx(ky) use pub real ky integer m,l,k call Pauli() Ham = 0
do k = 0,yn-1 if (k == 0) then do m = 1,hn do l = 1,hn Ham(m,l) = (m0-ty*cos(ky))*g1(m,l) + ay*sin(ky)*g3(m,l)
Ham(m,l + hn) = (-tx*g1(m,l) - im*ax*g2(m,l))/2 end do end do elseif ( k==yn-1 ) then do m = 1,hn do l = 1,hn Ham(k*hn + m,k*hn + l) = (m0-ty*cos(ky))*g1(m,l) + ay*sin(ky)*g3(m,l)
Ham(k*hn + m,k*hn + l - hn) = -tx*g1(m,l)/2 + im*ax*g2(m,l)/2 end do end do else do m = 1,hn do l = 1,hn Ham(k*hn + m,k*hn + l) = (m0 - ty*cos(ky))*g1(m,l) + ay*sin(ky)*g3(m,l)
Ham(k*hn + m,k*hn + l + hn) = (-tx*g1(m,l) - im*ax*g2(m,l))/2 Ham(k*hn + m,k*hn + l - hn) = -tx*g1(m,l)/2 + im*ax*g2(m,l)/2 end do end do end if end do call isHermitian() return end subroutine openx
subroutine openy(kx) use pub real kx integer m,l,k call Pauli() Ham = 0
do k = 0,yn-1 if (k == 0) then do m = 1,hn do l = 1,hn Ham(m,l) = (m0-tx*cos(kx))*g1(m,l) + ax*sin(kx)*g2(m,l)
Ham(m,l + hn) = (-ty*g1(m,l) - im*ay*g3(m,l))/2 end do end do elseif ( k==yn-1 ) then do m = 1,hn do l = 1,hn Ham(k*hn + m,k*hn + l) = (m0-tx*cos(kx))*g1(m,l) + ax*sin(kx)*g2(m,l)
Ham(k*hn + m,k*hn + l - hn) = -ty*g1(m,l)/2 + im*ay*g3(m,l)/2 end do end do else do m = 1,hn do l = 1,hn Ham(k*hn + m,k*hn + l) = (m0-tx*cos(kx))*g1(m,l) + ax*sin(kx)*g2(m,l)
Ham(k*hn + m,k*hn + l + hn) = (-ty*g1(m,l) - im*ay*g3(m,l) )/2 Ham(k*hn + m,k*hn + l - hn) = -ty*g1(m,l)/2 + im*ay*g3(m,l)/2 end do end do end if end do call isHermitian() return end subroutine openy
subroutine isHermitian() use pub integer i,j do i = 1,N do j = 1,N if (Ham(i,j) .ne. conjg(Ham(j,i)))then open(160,file = 'hermitian.dat') write(160,*)i,j write(160,*)Ham(i,j) write(160,*)Ham(j,i) write(160,*)"====================" write(*,*)"Hamiltonian is not hermitian" stop end if end do end do close(160) return end subroutine isHermitian
subroutine eigSol() use pub integer m lwork = -1 liwork = -1 lrwork = -1 call cheevd('V','Upper',N,Ham,lda,w,work,lwork & ,rwork,lrwork,iwork,liwork,info) lwork = min(2*N+N**2, int( work( 1 ) ) ) lrwork = min(1+5*N+2*N**2, int( rwork( 1 ) ) ) liwork = min(3+5*N, iwork( 1 ) ) call cheevd('V','Upper',N,Ham,lda,w,work,lwork & ,rwork,lrwork,iwork,liwork,info) if( info .GT. 0 ) then open(110,file="mes.dat",status="unknown") write(110,*)'The algorithm failed to compute eigenvalues.' close(110) end if return end subroutine eigSol
subroutine inv(matin,matout) use pub complex,intent(in) :: matin(N,N) complex:: matout(size(matin,1),size(matin,2)) real:: work2(size(matin,1)) integer::info2,ipiv(size(matin,1)) matout = matin call CGETRF(N,N,matout,N,ipiv,info2) if (info2.ne.0)then write(*,*)'Matrix is numerically singular!' stop end if call CGETRI(N,matout,N,ipiv,work2,N,info2) if (info2.ne.0)then write(*,*)'Matrix inversion failed!' stop end if return end subroutine inv
|