这里整理一下在用Fortran编写物理程序的时候经常用的几个函数封装,目前只是简单的几个矩阵对角化函数,后续有新的函数也会继续增加。
前言
最近因为遇到了计算瓶颈,需要用Fortran
来重写代码,其中就遇到了对矩阵的一些操作,虽然lapack已经提供了很好的函数,但是在实际程序编写中还是有些麻烦,这里就对目前我用到的函数进行了一些封装,方便调用。
一般方矩阵对角化
subroutine diagonalize_general_matrix(matdim,matin,matout,mateigval)
use param,only:dp,im
implicit none
integer matdim, LDA, LDVL, LDVR, LWMAX, INFO, LWORK
complex(dp) mateigval(matdim),matin(matdim,matdim),matout(matdim,matdim)
real,allocatable::VL(:,:),VR(:,:),WR(:),WI(:),WORK(:)
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
allocate(VL( LDVL, matdim), VR(LDVL,matdim), WR(matdim), WI(matdim), WORK(LWMAX))
LWORK = -1
matout = matin
CALL SGEEV( 'V', 'V', matdim, matout, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
CALL SGEEV( 'V', 'V', matdim, matout, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
STOP
END IF
do info = 1,matdim
mateigval(info) = WR(info) + im * WI(info)
end do
matout = VL ! 将左矢量输出
return
end subroutine
一般方矩阵对角化(双精度)
subroutine diagonalize_general_matrix(matdim, matin, matout, mateigval)
implicit none
integer, parameter :: dp = kind(1.0d0)
integer, intent(in) :: matdim
integer :: LDA, LDVL, LDVR, LWMAX, INFO, LWORK
complex(dp), intent(out) :: mateigval(matdim), matout(matdim, matdim)
complex(dp), intent(in) :: matin(matdim, matdim)
real(dp), allocatable :: VL(:,:), VR(:,:), WR(:), WI(:), WORK(:)
! 矩阵维度参数设置
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
matout = matin
! 分配工作空间
allocate(VL(LDVL, matdim), VR(LDVR, matdim), WR(matdim), WI(matdim), WORK(LWMAX))
! 初次调用 DGEEV 获取最佳工作空间大小
LWORK = -1
CALL DGEEV('V', 'V', matdim, matout, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)
! 根据第一次调用的返回值重新调整工作空间大小
LWORK = MIN(LWMAX, INT(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
! 第二次调用 DGEEV 计算特征值和特征向量
CALL DGEEV('V', 'V', matdim, matout, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO)
! 检查对角化是否成功
IF (INFO > 0) THEN
WRITE(*,*) 'The algorithm failed to compute eigenvalues.'
STOP
END IF
! 将实部和虚部合成为复数本征值
do info = 1, matdim
mateigval(info) = WR(info) + (0.0, 1.0) * WI(info)
end do
! 将右特征向量存储在 matout 中
matout = VR
! 释放工作空间
deallocate(VL, VR, WR, WI, WORK)
return
end subroutine diagonalize_general_matrix
复数矩阵对角化(单精度)
subroutine diagonalize_complex_matrix(matdim,matin,matout,mateigval)
! 对角化一般复数矩阵,这里的本征值是个复数
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim,LDA,LDVL,LDVR,LWMAX,INFO,LWORK
complex,intent(in)::matin(matdim,matdim)
complex,intent(out)::matout(matdim,matdim)
complex,intent(out)::mateigval(matdim)
REAL,allocatable::RWORK(:)
complex,allocatable::WORK(:)
complex,allocatable::VL(:,:)
complex,allocatable::VR(:,:)
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
! write(*,*)matin
allocate(RWORK(2 * matdim))
allocate(VL(LDVL,matdim))
allocate(VR(LDVR, matdim))
allocate(WORK(LWMAX))
matout = matin
LWORK = -1
call cgeev( 'V', 'N', matdim, matout, LDA, mateigval, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
call cgeev( 'V', 'N', matdim, matout, LDA, mateigval, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO )
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
! STOP
END IF
matout = VL ! 将左矢量输出
return
end subroutine diagonalize_complex_matrix
复数矩阵对角化(双精度)
subroutine diagonalize_complex_matrix(matdim, matin, matout, mateigval)
! 对角化一般复数矩阵,这里的本征值是复数(双精度)
! matin 输入矩阵, matout 本征矢量, mateigval 本征值
implicit none
integer, intent(in) :: matdim
integer :: LDA, LDVL, LDVR, LWMAX, INFO, LWORK
integer, parameter :: dp = kind(1.0d0)
complex(dp), intent(in) :: matin(matdim, matdim)
complex(dp), intent(out) :: matout(matdim, matdim)
complex(dp), intent(out) :: mateigval(matdim)
real(dp), allocatable :: RWORK(:)
complex(dp), allocatable :: WORK(:)
complex(dp), allocatable :: VL(:,:)
complex(dp), allocatable :: VR(:,:)
! 设置矩阵维度参数
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
! 分配工作空间
allocate(RWORK(2 * matdim))
allocate(VL(LDVL, matdim))
allocate(VR(LDVR, matdim))
allocate(WORK(LWMAX))
! 将输入矩阵赋值给 matout
matout = matin
! 初次调用 ZGEEV 获取最佳工作空间大小
LWORK = -1
call ZGEEV('V', 'V', matdim, matout, LDA, mateigval, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
! 根据第一次调用的返回值重新调整工作空间大小
LWORK = min(LWMAX, int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
! 第二次调用 ZGEEV 计算本征值和本征矢量
call ZGEEV('V', 'V', matdim, matout, LDA, mateigval, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
! 检查对角化是否成功
if (INFO > 0) then
write(*, *) 'The algorithm failed to compute eigenvalues.'
end if
! 将右特征向量存储在 matout 中
matout = VR
! 释放工作空间
deallocate(WORK)
deallocate(RWORK)
deallocate(VL)
deallocate(VR)
return
end subroutine diagonalize_complex_matrix
矩阵求逆(单精度)
subroutine Matrix_Inv(matdim,matin,matout)
! 矩阵求逆
implicit none
integer matdim,dp,info
parameter(dp = kind(1.0))
complex(dp),intent(in) :: matin(matdim,matdim)
complex(dp):: matout(size(matin,1),size(matin,2))
real(dp):: work2(size(matin,1)) ! work2 array for LAPACK
integer::ipiv(size(matin,1)) ! pivot indices
! Store matin in matout to prevent it from being overwritten by LAPACK
matout = matin
! SGETRF computes an LU factorization of a general M - by - N matrix A
! using partial pivoting with row interchanges .
call CGETRF(matdim,matdim,matout,matdim,ipiv,info)
! if (info.ne.0) stop 'Matrix is numerically singular!'
if (info.ne.0) write(*,*)'Matrix is numerically singular!'
! SGETRI computes the inverse of a matrix using the LU factorization
! computed by SGETRF.
call CGETRI(matdim,matout,matdim,ipiv,work2,matdim,info)
! if (info.ne.0) stop 'Matrix inversion failed!'
if (info.ne.0) write(*,*)'Matrix inversion failed!'
return
end subroutine Matrix_Inv
矩阵求逆(双精度)
subroutine Matrix_Inv(matdim, matin, matout)
! 矩阵求逆(双精度)
implicit none
integer, intent(in) :: matdim
integer :: info
integer, parameter :: dp = kind(1.0d0)
complex(dp), intent(in) :: matin(matdim, matdim)
complex(dp) :: matout(matdim, matdim)
complex(dp), allocatable :: work2(:) ! 工作空间数组
integer :: ipiv(matdim) ! pivot indices
! 将输入矩阵 matin 复制到 matout,防止 LAPACK 函数覆盖 matin
matout = matin
! 确定工作空间大小
allocate(work2(matdim))
! ZGETRF 用于矩阵 LU 分解
call ZGETRF(matdim, matdim, matout, matdim, ipiv, info)
if (info /= 0) then
write(*, *) 'Matrix is numerically singular!'
return
end if
! ZGETRI 用于求解逆矩阵
call ZGETRI(matdim, matout, matdim, ipiv, work2, matdim, info)
if (info /= 0) then
write(*, *) 'Matrix inversion failed!'
return
end if
! 释放工作空间
deallocate(work2)
return
end subroutine Matrix_Inv
厄米矩阵对角化(单精度)
subroutine diagonalize_Hermitian_matrix(matdim,matin,matout,mateigval)
! 厄米矩阵对角化
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim
integer lda0,lwmax0,lwork,lrwork,liwork,info
complex matin(matdim,matdim),matout(matdim,matdim)
real mateigval(matdim)
complex,allocatable::work(:)
real,allocatable::rwork(:)
integer,allocatable::iwork(:)
!-----------------
lda0 = matdim
lwmax0 = 2 * matdim + matdim**2
allocate(work(lwmax0))
allocate(rwork(1 + 5 * matdim + 2 * matdim**2))
allocate(iwork(3 + 5 * matdim))
matout = matin
lwork = -1
liwork = -1
lrwork = -1
call cheevd('V','U',matdim,matout,lda0,mateigval,work,lwork ,rwork,lrwork,iwork,liwork,info)
lwork = min(2 * matdim + matdim**2, int( work( 1 ) ) )
lrwork = min(1 + 5 * matdim + 2 * matdim**2, int( rwork( 1 ) ) )
liwork = min(3 + 5 * matdim, iwork( 1 ) )
call cheevd('V','U',matdim,matout,lda0,mateigval,work,lwork,rwork,lrwork,iwork,liwork,info)
if( info .GT. 0 ) then
open(11,file = "mes.dat",status = "unknown")
write(11,*)'The algorithm failed to compute eigenvalues.'
close(11)
end if
return
end subroutine diagonalize_Hermitian_matrix
厄米矩阵对角化(双精度)
subroutine diagonalize_Hermitian_matrix(matdim, matin, matout, mateigval)
! 厄米矩阵对角化
! matin 输入矩阵, matout 本征矢量, mateigval 本征值
implicit none
integer, parameter :: dp = kind(1.0d0) ! 双精度
integer, intent(in) :: matdim
integer :: lda0, lwmax0, lwork, lrwork, liwork, info
complex(dp), intent(in) :: matin(matdim, matdim)
complex(dp), intent(out) :: matout(matdim, matdim)
real(dp), intent(out) :: mateigval(matdim)
complex(dp), allocatable :: work(:)
real(dp), allocatable :: rwork(:)
integer, allocatable :: iwork(:)
!-----------------
lda0 = matdim
lwmax0 = 2 * matdim + matdim**2
allocate(work(lwmax0))
allocate(rwork(1 + 5 * matdim + 2 * matdim**2))
allocate(iwork(3 + 5 * matdim))
matout = matin
lwork = -1
liwork = -1
lrwork = -1
! 初次调用 zheevd 获取最佳工作空间大小
call zheevd('V', 'U', matdim, matout, lda0, mateigval, work, lwork, rwork, lrwork, iwork, liwork, info)
! 根据第一次调用的返回值重新调整工作空间大小
lwork = min(2 * matdim + matdim**2, int(work(1)))
lrwork = min(1 + 5 * matdim + 2 * matdim**2, int(rwork(1)))
liwork = min(3 + 5 * matdim, iwork(1))
! 重新分配工作空间
deallocate(work)
allocate(work(lwork))
deallocate(rwork)
allocate(rwork(lrwork))
deallocate(iwork)
allocate(iwork(liwork))
! 第二次调用 zheevd 计算本征值和本征矢量
call zheevd('V', 'U', matdim, matout, lda0, mateigval, work, lwork, rwork, lrwork, iwork, liwork, info)
! 错误处理
if (info > 0) then
open(11, file = "mes.dat", status = "unknown")
write(11, *) 'The algorithm failed to compute eigenvalues.'
close(11)
end if
return
end subroutine diagonalize_Hermitian_matrix
提示
如果使用了双精度,那么在MPI并行的时候,数据收集也需要对应的修改为双精度
call MPI_Barrier(MPI_COMM_WORLD,ierr) ! 等所有核心都计算完成
call MPI_Reduce(U0_mpi, U0_list, Un, MPI_DOUBLE_PRECISION, MPI_SUM, 0, MPI_COMM_WORLD,ierr)
call MPI_Reduce(da_mpi, da_list, Un, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, MPI_COMM_WORLD,ierr)
call MPI_Reduce(Ds_con_mpi, Ds_con_list, 4 * Un, MPI_DOUBLE_PRECISION, MPI_SUM, 0, MPI_COMM_WORLD,ierr)
实数矩阵对角化(单精度)
subroutine diagonalize_real_matrix(matdim,matin,matout,mateigval)
! 对角化一般复数矩阵,这里的本征值是个复数
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim,LDA,LDVL,LDVR,LWMAX,INFO,LWORK
real,intent(in)::matin(matdim,matdim)
real,intent(out)::matout(matdim,matdim)
complex,intent(out)::mateigval(matdim)
real valre(matdim),valim(matdim)
real,allocatable::WORK(:)
real,allocatable::VL(:,:)
real,allocatable::VR(:,:)
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
! write(*,*)matin
allocate(VL(LDVL,matdim))
allocate(VR(LDVR, matdim))
allocate(WORK(LWMAX))
matout = matin
LWORK = -1
call sgeev( 'V', 'N', matdim, matout, LDA, valre,valim, VL, LDVL,VR, LDVR, WORK, LWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
call sgeev( 'V', 'N', matdim, matout, LDA, valre,valim, VL, LDVL,VR, LDVR, WORK, LWORK, INFO)
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
! STOP
END IF
do info = 1,matdim
mateigval(info) = valre(info) + im * valim(info)
end do
matout = VL ! 将左矢量输出
return
end subroutine diagonalize_real_matrix
实数矩阵的双精度版本实际上就是一般矩阵对角化
高斯展宽
计算态密度等响应系数的时候用到
function Gaussian_broadening(energy)
implicit none
integer, parameter :: dp = kind(1.0)
real(dp), intent(in) :: energy
real(dp) Gaussian_broadening
Gaussian_broadening = exp(-(energy**2) / (2.0 * sigma**2))
end function Gaussian_broadening
费米分布
function fermi(ek)
implicit none
integer, parameter :: dp = kind(1.0)
real(dp) fermi,ek,engcut,kbt
engcut = 100
kbt = 1e-10
if(ek/kbt > -engcut .and. ek/kbt < engcut) fermi = 1.0/(exp(ek/kbt) + 1)
if(ek/kbt < -engcut) fermi = 1.0
if(ek/kbt > engcut) fermi = 0.0
return
end
KroneckerDelta 函数
function Kronecker_delta(i1,i2)
implicit none
integer i1,i2,Kronecker_delta
if(i1 .eq. i2)then
Kronecker_delta = 1
else
Kronecker_delta = 0
end if
return
end function
$<\psi|H|\psi>$
function Ave_Ham(matdim,psi1,Ham,psi2)
! 计算 <psi_1|Ham|psi_2>
implicit none
integer, parameter :: dp = kind(1.0)
complex(dp) Ave_Ham,expectation,Ham(matdim,matdim),temp(matdim),psi1(matdim),psi2(matdim)
integer i0,j0,matdim
expectation = 0.0
do i0 =1,matdim
temp(i0) = 0.0
do j0 = 1,matdim
temp(i0) = temp(i0) + Ham(i0, j0) * psi2(j0)
end do
end do
do i0 = 1,matdim
expectation = expectation + conjg(psi1(i0)) * temp(i0)
end do
Ave_Ham = expectation
return
end function
向量点积
complex(dp) function dot(vecdim,vec1,vec2)
! 计算两个向量的乘积
implicit none
integer, parameter :: dp = kind(1.0)
integer vecdim,i0
complex(dp) temp1
complex(dp),intent(in) :: vec1(vecdim)
complex(dp),intent(in) :: vec2(vecdim)
temp1 = 0.0
do i0 = 1,vecdim
temp1 = temp1 + vec1(i0) * vec2(i0)
end do
dot = temp1
return
end function
完整代码&测试
module param
implicit none
integer, parameter :: dp = kind(1.0)
integer num_wann,nrpts,hn
parameter(hn = 4)
real(dp) ones(hn,hn)
real(dp),parameter::pi = 3.1415926535897
complex(dp),parameter::im = (0.,1.) !Imagine unit
real(dp) tsig,tpi,tsig2,tpi2,mu ! 哈密顿量参数
parameter(tsig = 2.0,tpi = tsig/1.56,tsig2 = tsig/7.0,tpi2 = tsig2/1.56)
complex(dp),allocatable::HmnR(:,:,:)
real(dp),allocatable::ndegen(:)
real(dp),allocatable::irvec(:,:)
integer,allocatable::BZklist(:,:)
end module
!==============================================================================================================================================================
program main
use param
implicit none
complex(dp) Ham(hn,hn),temp1(hn,hn),temp2(hn),A1(4,4)
real(dp) temp3(hn),A0(10,10)
character(len = 20) char1,char2,char3
integer i1,i2
do i1 = 1,10
do i2 = 1,10
A0(i1,i2) = i1 + i2
end do
end do
char1 = "("
write(char2,"(I4)")10
char3 = "F8.4)"
char2 = trim(char1)//trim(char2)//trim(char3)
! write(*,*)char2
write(*,"(10F8.4)")A0
write(*,*)"--------------------------------------"
write(*,char2)A0
call matset(0.3,0.2,Ham)
write(*,*)Ham
write(*,*)"-----------------------------------------"
call diagonalize_complex_matrix(4,Ham,temp1,temp2)
call diagonalize_Hermitian_matrix(4,Ham,temp1,temp3)
write(*,*)temp2
write(*,*)temp3
call Matrix_Inv(4,Ham,temp1)
write(*,*)matmul(Ham,temp1)
call diagonalize_real_matrix(4,A0,A1,temp2)
write(*,*)temp2
stop
end program main
!==============================================================================================================================================================
subroutine matset(kx,ky,Ham)
! 矩阵赋值,返回Ham
use param
implicit none
real(dp) kx,ky
integer k0
complex(dp) Ham(hn,hn)
complex(dp) h1(hn,hn),h2(hn,hn),h13,h14,h23,h24,hn11,hn22,hn12
h13 = 1.0/4*(tpi + 3.0 * tsig)*(exp(im*(ky/(2 * sqrt(3.0))- kx/2.0)) + exp(im*(ky/(2 * sqrt(3.0)) + kx/2.0)) ) + tpi*exp(-im * ky/sqrt(3.0))
h14 = -sqrt(3.0)/4 * (tpi - tsig) * (-1 + exp(im * kx)) * exp(-1.0/6.0 * im * (3.0 * kx - sqrt(3.0) * ky ))
h23 = h14
h24 = 1.0/4 * (3.0 * tpi + tsig) * ( exp(im * (ky/(2 * sqrt(3.0)) - kx/2.0 ) ) + exp(im * (ky/(2 * sqrt(3.0)) + kx/2.0 ) )) + tsig * exp(-im * ky/sqrt(3.0))
hn11 = (3.0 * tpi2 + tsig2) * cos(kx/2.0) * cos(sqrt(3.0) * ky/2.0) + 2 * tsig2 * cos(kx)
hn12 = sqrt(3.0) * (tpi2 - tsig2) * sin(kx/2.0) * sin(sqrt(3.0) * ky /2.0)
hn22 = (tpi2 + 3.0 * tsig2) * cos(kx/2.0) * cos(sqrt(3.0) * ky / 2) + 2 * tpi2 * cos(kx)
! 单位矩阵
do k0 = 1,hn
ones(k0,k0) = 1
end do
H1(1,3) = h13
H1(3,1) = conjg( H1(1,3))
H1(1,4) = h14
H1(4,1) = conjg(H1(1,4))
H1(2,3) = h23
H1(3,2) = conjg(H1(2,3))
H1(2,4) = h24
H1(4,2) = conjg(H1(2,4))
!-------------
H2(1,1) = hn11
H2(1,2) = hn12
H2(2,1) = conjg(H2(1,2))
H2(2,2) = hn22
H2(3,3) = hn11
H2(3,4) = hn12
H2(4,3) = conjg(H2(3,4))
H2(4,4) = hn22
!-------------
Ham = 0.0
Ham = H1 + H2 - mu * ones
!---------------------------------------------------------------------
return
end subroutine
!==============================================================================================================================================================
subroutine diagonalize_complex_matrix(matdim,matin,matout,mateigval)
! 对角化一般复数矩阵,这里的本征值是个复数
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim,LDA,LDVL,LDVR,LWMAX,INFO,LWORK
complex,intent(in)::matin(matdim,matdim)
complex,intent(out)::matout(matdim,matdim)
complex,intent(out)::mateigval(matdim)
REAL,allocatable::RWORK(:)
complex,allocatable::WORK(:)
complex,allocatable::VL(:,:)
complex,allocatable::VR(:,:)
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
! write(*,*)matin
allocate(RWORK(2 * matdim))
allocate(VL(LDVL,matdim))
allocate(VR(LDVR, matdim))
allocate(WORK(LWMAX))
matout = matin
LWORK = -1
call cgeev( 'V', 'N', matdim, matout, LDA, mateigval, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
call cgeev( 'V', 'N', matdim, matout, LDA, mateigval, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO )
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
! STOP
END IF
matout = VL ! 将左矢量输出
return
end subroutine diagonalize_complex_matrix
!================================================================================================================================================================================================
subroutine Matrix_Inv(matdim,matin,matout)
! 矩阵求逆
implicit none
integer matdim,dp,info
parameter(dp = kind(1.0))
complex(dp),intent(in) :: matin(matdim,matdim)
complex(dp):: matout(size(matin,1),size(matin,2))
real(dp):: work2(size(matin,1)) ! work2 array for LAPACK
integer::ipiv(size(matin,1)) ! pivot indices
! Store matin in matout to prevent it from being overwritten by LAPACK
matout = matin
! SGETRF computes an LU factorization of a general M - by - N matrix A
! using partial pivoting with row interchanges .
call CGETRF(matdim,matdim,matout,matdim,ipiv,info)
! if (info.ne.0) stop 'Matrix is numerically singular!'
if (info.ne.0) write(*,*)'Matrix is numerically singular!'
! SGETRI computes the inverse of a matrix using the LU factorization
! computed by SGETRF.
call CGETRI(matdim,matout,matdim,ipiv,work2,matdim,info)
! if (info.ne.0) stop 'Matrix inversion failed!'
if (info.ne.0) write(*,*)'Matrix inversion failed!'
return
end subroutine Matrix_Inv
!================================================================================================================================================================================================
subroutine diagonalize_Hermitian_matrix(matdim,matin,matout,mateigval)
! 厄米矩阵对角化
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim
integer lda0,lwmax0,lwork,lrwork,liwork,info
complex matin(matdim,matdim),matout(matdim,matdim)
real mateigval(matdim)
complex,allocatable::work(:)
real,allocatable::rwork(:)
integer,allocatable::iwork(:)
!-----------------
lda0 = matdim
lwmax0 = 2 * matdim + matdim**2
allocate(work(lwmax0))
allocate(rwork(1 + 5 * matdim + 2 * matdim**2))
allocate(iwork(3 + 5 * matdim))
matout = matin
lwork = -1
liwork = -1
lrwork = -1
call cheevd('V','U',matdim,matout,lda0,mateigval,work,lwork ,rwork,lrwork,iwork,liwork,info)
lwork = min(2 * matdim + matdim**2, int( work( 1 ) ) )
lrwork = min(1 + 5 * matdim + 2 * matdim**2, int( rwork( 1 ) ) )
liwork = min(3 + 5 * matdim, iwork( 1 ) )
call cheevd('V','U',matdim,matout,lda0,mateigval,work,lwork,rwork,lrwork,iwork,liwork,info)
if( info .GT. 0 ) then
open(11,file = "mes.dat",status = "unknown")
write(11,*)'The algorithm failed to compute eigenvalues.'
close(11)
end if
return
end subroutine diagonalize_Hermitian_matrix
!==============================================================================================================================================================
subroutine diagonalize_real_matrix(matdim,matin,matout,mateigval)
! 对角化一般复数矩阵,这里的本征值是个复数
! matin 输入矩阵 matout 本征矢量 mateigval 本征值
integer matdim,LDA,LDVL,LDVR,LWMAX,INFO,LWORK
real,intent(in)::matin(matdim,matdim)
real,intent(out)::matout(matdim,matdim)
complex,intent(out)::mateigval(matdim)
real valre(matdim),valim(matdim)
real,allocatable::WORK(:)
real,allocatable::VL(:,:)
real,allocatable::VR(:,:)
LDA = matdim
LDVL = matdim
LDVR = matdim
LWMAX = 2 * matdim + matdim**2
! write(*,*)matin
allocate(VL(LDVL,matdim))
allocate(VR(LDVR, matdim))
allocate(WORK(LWMAX))
matout = matin
LWORK = -1
call sgeev( 'V', 'N', matdim, matout, LDA, valre,valim, VL, LDVL,VR, LDVR, WORK, LWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
call sgeev( 'V', 'N', matdim, matout, LDA, valre,valim, VL, LDVL,VR, LDVR, WORK, LWORK, INFO)
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
! STOP
END IF
do info = 1,matdim
mateigval(info) = valre(info) + im * valim(info)
end do
end subroutine diagonalize_real_matrix
公众号
相关内容均会在公众号进行同步,若对该Blog感兴趣,欢迎关注微信公众号。
yxli406@gmail.com